Connect (X)

Tag Archives: DAS

ADRF Joins the Anterix Active Ecosystem Program

Advanced RF Technologies (ADRF), has joined the Anterix Active Ecosystem Program to help expand the landscape of 900 MHz LTE solutions and services for the U.S electric grid. ADRF will initially be collaborating with Anterix with its flagship ADXV DAS for in-building wireless connectivity.

Anterix is the largest holder of licensed spectrum in the 900 MHz band (896-901/935-940 MHz) throughout the contiguous United States, plus Hawaii, Alaska, and Puerto Rico, and is uniquely positioned to enable the private LTE solutions that support secure, resilient and customer-controlled operations.

The Anterix Active Ecosystem Program brings together technology innovators to support Anterix customers deploying and operating 900 MHz private LTE networks. Members will share technical insights and collaborate to support the utility sector with 900 MHz private LTE solutions.

ADRF’s ADXV DAS 900 MHz solution has been recognized by the Anterix Active Ecosystem Program with the Anterix Active badge – a recognition provided to devices and solutions reviewed by Anterix to be commercial-ready to support 900 MHz private networks.

 Source: ADRF

Smart Cities Connectivity to Boost DAS Market: ReportLinker

ReportLinker’s report, “Distributed Antenna Systems Market — Growth, Trends and Forecasts (2020 – 2025)” says that distributed antenna system (DAS) networks have helped industries overcome shortcomings of internet connectivity and high bandwidth. This help is the reason why DAS is finding further acceptance in various other regions and industries, according to ReportLinker.

“One of the major factors for the penetration of DAS has been the increasing demand for high-speed connectivity everywhere,” information from the company reads. “As technology has proved to be cost-effective, even governments across the globe have been proactively deploying this antenna system.”

Some of the advantages that are driving the demand for DAS are better-defined coverage, fewer coverage holes, same coverage using lower overall power, along with individual antennas that do not need to be elevated as high as a single antenna for the equivalent coverage, the report reads.

ReportLinker said that in the United States — especially in Las Vegas — in-building DAS has become the focus of many of the Las Vegas resorts and venues to keep customers connected with the outside world. Similar developments are expected to follow in other regions in places that have high commercial value and that want increased customer footfall with better connectivity options, according to the report.

“In smart cities, DAS has emerged as an essential solution that helps create the required infrastructure for achieving connected systems,” information disclosed by ReportLinker reads. “Smart buildings, hospitals, shopping complex and vehicular traffic management need continuous communication and, thus, are expected to boost the market demand. Several smart city projects and initiatives are ongoing across the globe, and by 2025, it is expected that there would be around 30 global smart cities, and 50 percent of these would be located in North America and Europe.”

ReportLinker said that these steps are supported by global investments, which, according to the Organisation for Economic Co-operation and Development, would be about $1.8 trillion, between 2010 and 2030, for all infrastructure projects in urban cities. This is one of the major factors pushing the demand for distributed antenna systems, primarily owing to their application in smart cities connectivity applications.

Public Safety DAS

Public safety DAS networks provide wireless service via an antenna system, particularly to buildings, in order to ensure that emergency responders can maintain wireless communications within a building structure and on the job during emergencies.

“Enabling emergency communication is crucial when it comes to the men and women who are often the first on a scene when it comes to public safety,” information from ReportLinker reads. “In case of public safety, DAS design will need to meet the system coverage requirements of both the National Fire Protection Association (NFPA) and the International Fire Code (IFC). Although IFC dictates that 95 percent of coverage is needed in all areas, NFPA dictates that 99 percent coverage is required in areas of vital importance, such as those designated by the local fire department.”

According to ReportLinker, wth higher deaths due to fires in countries such as the United States, DAS networks are expected to witness an increased adoption, owing to the rising significance of public safety. The DAS market is also witnessing an increase in penetration of high-speed internet technologies, ReportLinker said, such as 4G and 5G, which has led to modifications of public safety in-building wireless DAS to support such internet speeds. This, in turn, has enabled a more extended reach and has been promoting the growth of the market, ReportLinker said.

“Furthermore, the growing trend of smart city development in emerging economies has been leading to the faster application of public safety in-building wireless DAS in several residential and commercial building complexes,” ReportLinker added. “This has again positively influenced the growth of the global public safety in-building wireless DAS market.

Competitive Landscape

ReportLinker stated the DAS market is highly fragmented because of increasing mobile data traffic, a proliferation of connected devices resulting from the internet of things (IoT), a rising need for spectrum efficiency and growing consumer demand for extended network coverage and uninterrupted connectivity.

“Many companies are now entering in to the market with an array of scope,” ReportLinker said. “Some of the key players in the market are Anixter, CommScope, PT Tower Bersama Infrastructure TBK, Corning and Antenna Products Corporation.”


“Distributed Antenna Systems Market — Growth, Trends and Forecasts (2020 – 2025)”

Source: ReportLinker

In-Building Wireless Report

From Gap Wireless

Wireless connectivity has never been as crucial to as many people as it is today. In a new world shaped by social distancing, wireless capabilities have transcended convenience and have become the primary fabric of human interaction.

As recently as 2016, ABI Research reported that more than 80 percent of mobile data traffic occurs inside buildings. Buildings, by their nature, provide a physical barrier to wireless communication. Dropped calls, poor signals and slow downloads all result when building materials like concrete walls and low-emission windows obstruct radio-frequency (RF) signals. In the worst-case scenario, parts of a building may become wireless dead zones. There is also the question of capacity — buildings may be home to many more users than can be supported by a given cell tower.

In-building wireless (IBW) solutions serve to address these concerns. IBW solutions can ensure that networks deliver on quality of service (QoS) agreements and that quality of experience (QoE) expectations are met by building occupants. These solutions range from minimal passive signal routing that ensure coverage to sophisticated digital distributed antenna systems that add additional cellular capacity. There is no one-size-fits-all IBW solution; the correct approach depends on the nature of the building and the scope of wireless services required.

The following information examines different available IBW solutions, the challenges that come with them and the emerging technologies that are changing the landscape of IBW.


Distributed Antenna Systems

One of the most common approaches to in-building wireless is the distributed antenna system, or DAS. In the context of buildings, this is sometimes referred to as indoor DAS or iDAS.

The principle behind a DAS is simple: by placing antennas strategically throughout a building — e.g., one in each room — cellular signals can be distributed where users need them. The signals can originate outside the building, in which case an external antenna receives and sends the signals to internal antennas, or the signals can come from an on-site base transceiver station (BTS) provided by a carrier.

In effect, a DAS can increase cellular capacity for a building and allow wireless signals to clearly reach end-user devices.

There are many considerations when planning a DAS. For instance, will it need to support multiple cellular carriers? What sources of interference will need to be mitigated? Will the system need to respond to changing user behavior? How will it be installed, and how much will it cost? Several types of DAS architectures address these differing needs.


Passive DAS

The simplest type of DAS is called a passive DAS. Such systems are best-suited for smaller buildings without complex or changing requirements. A passive DAS receives cellular signals from an external antenna and sends them through a low-loss coaxial cable to a bidirectional amplifier (BDA). From the BDA, the signal is sent over coaxial cables to multiband antennas throughout the building, being directed with passive components such as splitters and couplers.

Passive DAS systems can be an economical choice for IBW, but design complexity increases with the number of carriers that must be supported. Installing coaxial cables throughout the building can be difficult, and passive DAS systems are particularly susceptible to passive intermodulation (PIM) interference.


Active DAS

As cellular technology has evolved, a much more common approach to IBW is what’s called an active DAS. Such a system resembles a passive DAS, but, as its name suggests, an active DAS employs active RF components. Although this results in a more complex system with higher power consumption, it allows much more control over the signal distribution. An active DAS is configured with a head-end unit that receives multiple RF signals and distributes them to remote radio units throughout a building. These remote radio units rebroadcast the RF signal through either integrated or external antennas.

Active DAS systems use single-mode (SM) or multimode (MM) fiber-optic cables between the head-end unit and remote radio units, a transmission medium that is both easier to install and less lossy than the coaxial cables used in passive DAS systems. This enables longer fiber-optic cable lengths in an active DAS compared with coaxial cable lengths in a passive DAS. In an active DAS, the fiber-optic cables feed into the remote radio units, which serve as the RF source for the antennas and which can be placed close to them, regardless of the length of the fiber-optic cable. In a passive DAS, the antennas are necessarily separated from the RF source by the entire length of the coaxial cable. This allows an active DAS to encompass much greater distances within a building (or campus) than a passive DAS. The use of fiber-optic cables also means active DAS systems have less potential exposure to PIM, though care must still be taken to guard against PIM in the passive RF components before the head-end unit as well as around the antennas.

Active DAS systems have a higher cost than passive DAS systems, as they require more equipment and more space to implement. However, they provide more flexibility as well. The signals sent to each antenna can be tuned band-by-band to ensure optimal coverage across the spectrum. With active gain elements and low-loss fiber-optic cables, active DAS systems are also a better fit for larger buildings.


Hybrid DAS

There is an approach between active and passive DAS called, fittingly, hybrid DAS. A hybrid DAS employs active components, including head-end units and remote radio units, in the same way as an active DAS. However, the remote radio units distribute signals passively throughout a particular zone of coverage in the same fashion as a passive DAS, routing RF signals via splitters and similar components to several multiband antennas. This saves on capital expenditure, as fewer remote radio units and less fiber optic-cable are required than in an active DAS. However, each remote radio unit must provide power high enough to support its zone of coverage.


Digital DAS

A variant of active (or hybrid) DAS that uses digital instead of analog signals is called a digital DAS. The configuration of a digital DAS is similar to an active DAS, with RF signals being conditioned and routed through a head-end unit over fiber-optic cables to multiband remote radio units and antennas throughout the building. However, whereas an active DAS distributes analog optical signals over the fiber-optic cables, a digital DAS head-end unit converts the analog RF signals into digital optical signals.

These signals can be sent directly to a remote radio unit, but additionally flexibility can be achieved by sending them to components called expansion units. These convert the optical signals into electrical signals and route them as necessary to different remote radio units, which can be determined in software. Older digital DAS products used Ethernet cables between expansion units and remote radio units, but modern systems like the Sunwave Solutions CrossFire 2.0 DAS use a hybrid fiber/power cable all the way to the end node. Digital DAS systems support Common Public Radio Interface (CPRI) or other communication protocols.

One key advantage of a digital DAS is that signals can be addressed to specific remote radio units. This allows building operators to adjust coverage dynamically throughout their facility; for example, switching signals from one zone to another based on the time of day. Another advantage is that digital signals have a much better signal-to-noise ratio (SNR) than the modulated analog signals on the fiber-optic cables, making them more resilient to losses. For this reason, it may be possible to reuse existing fiber-optic cables in a building rather than installing dedicated cables. A hybrid fiber/power cable can bring power directly to a remote radio unit. For example, the Sunwave CrossFire N2RU nano power remote unit supports eight bands with a power output of 20 dBm per band. If even higher powers are needed, such as in tunnels, digital DAS systems can also use high-power remote radio units powered with a local supply. PIM is largely alleviated in a digital DAS, though sources of interference around the antennas still must be considered.


Distributed Small Cells

An emerging architecture for IBW is distributed small cells (DSC), often shortened to small cell. In contrast to a DAS, which contains a centralized source with a single backhaul connection to the operator network, a small cell system consists of a network of individual nodes that each must have a separate power supply and backhaul connection. Depending on their coverage and capacity, small cells can be further categorized as metrocells, nanocells, picocells and femtocells in descending order of power.

Small cells have both pros and cons. They can often be deployed quickly and with lower cost than a DAS, but they are much less flexible. Small cells typically only support a single carrier and only one or two bands, whereas a DAS can support multiple carriers and bands. Small cells may not be an adaptable solution if the needs of a building change. To accommodate the individual backhaul links, some small cells (generally femtocells) need reliable high-speed internet, though other cells (generally nano and picocells) employ a dedicated backhaul to the carrier.


Approaching IBW Design

As we mentioned earlier, there is no single correct approach to in-building wireless solutions; what’s best for one facility may be a poor fit for another. We’ll now take a closer look at some of the challenges and trade-offs that must be balanced in any IBW solution.



Ultimately, an IBW solution will succeed or fail based on the experiences of the end users. Thus, it is crucial to consider these end users when planning a system. For example, an office worker using a smartphone will have a much different user experience requirement than a first responder using a two-way radio. With an ever-growing number of wireless standards and multiple operators to consider, it is necessary to ensure support for as many current and future mobile technologies as possible. For example, 5G is steadily rolling out and will become ubiquitous within the next several years. Although users will expect support for this latest standard, an IBW solution must not neglect older but common standards such as LTE and 3G.

It’s also important to recognize that 5G will in time be supplanted by 6G, which will give way to 7G, and so on. It is therefore vital to plan ahead and ensure that future technologies can be supported without completely overhauling IBW equipment or architecture.


Total Cost of Ownership

The total cost of ownership, or TCO, is one of the most important variables to consider when planning an IBW solution. More expense does not necessarily mean better experience. If you have a small-to-medium-sized building that doesn’t need to support many operators and that won’t change much over time, a small cell system or passive DAS can provide a perfectly suitable solution for the lowest cost. On the other hand, if your facility is large or spread out and will need to adapt dynamically to changing user behavior, a more expensive digital DAS system may be warranted. For an accurate picture of the TCO, you must consider the cost of all equipment (head-end units, remote radio units, cooling equipment, cabling, etc.) as well as all installation and operating costs (electricity, fiber leases, IP backhaul, real estate and roof access, etc.). Systems such as the CrossFire 2.0 digital DAS platform reduce TCO with features including extremely low power consumption and hybrid fiber/power cabling to simplify installation



It is important to understand and mitigate all sources of interference that your IBW solution may experience. A common source of noise is PIM, which can arise in passive RF components. The prevalence of PIM decreases from a passive DAS (most susceptible) to an active DAS (less susceptible) to a digital DAS (least susceptible) but must always be considered in a design, so make sure you look for components with low PIM. Besides PIM, there may be RF interference originating from outside your building.

This is most common in dense urban areas with a lot of wireless traffic. To combat such problems, RF insulation may be necessary.


Choosing the Right Antennas

Although a DAS can distribute RF signals throughout a building, the last stop before the end device is the antennas. In active and digital DAS architectures, some remote radio units have integrated multiband antennas, but it can often be advantageous to use external antennas. In this way, specific antennas can be chosen based on the setting and application they serve, such as wireless carrier, public safety or both.

Where an omnidirectional antenna may be useful in some circumstances, a directional antenna may make more sense in others. Choosing the correct antenna and placing it properly is a flexible way to tune your IBW performance (and aesthetic).


Finding the Right Partner

In-building wireless solutions provide a way to ensure sufficient wireless coverage and capacity for a given building. However, there are a variety of IBW solutions and architectures, each with advantages and trade-offs. For a quick and inexpensive way to add capacity, distributed small cells are an increasingly popular approach. For a complex facility with many users of different needs, a sophisticated digital DAS may be the only tenable solution. When partnering with IBW system and component providers, communicate the specific needs of your building. Providers like Sunwave Solutions offer a wide portfolio of IBW technology to help you implement the right solution.

Source: Gap Wireless

Advanced RF Technologies Introduces UL-Certified VHF and UHF Public Safety Repeaters

Advanced RF Technologies, Inc. (ADRF), said to be the largest pure-play in-building Distributed Antenna System (DAS) provider for public safety and commercial radio frequencies, has announced the commercial availability of its PSR-U Series VHF and UHF channelized digital repeaters. The PSR-U Series is certified to UL 2524, second edition, the Standard for in-building 2-way emergency radio communication enhancement systems (ERCES).

UL 2524, second edition, represents the most rigorous set of standards to enable emergency responders to communicate with each other in and around commercial buildings. It covers products including repeater, transmitter, receiver, signal booster components, remote annunciators and operational consoles, power supply and battery charging system components to be employed in accordance with the following Model Building and Installation Codes: NFPA 1, NFPA 72, NFPA 101, NFPA 1221 and the International Fire Code (IFC).

“With the addition of our PSR-U Series VHF and UHF repeaters, we now offer building owners a full range of UL 2524-certified products to support all public safety frequency bands including 700/800 and FirstNet,” said Dennis Burns, director of public safety at ADRF. “ADRF has been a leader in public safety for over 20 years and we strive to ensure our products comply or exceed every code requirement and standard in all jurisdictions. As UL 2524 is adopted across the nation over the next few years, building owners will require these solutions to adequately support first responder communication.”

ADRF’s complete list of PSR-U Series solutions now includes: PSR-VU-9537-U: 5W VHF/UHF Class A/Class B digital repeater; PSR-U-9537-U: 5W UHF Class A/Class B digital repeater; PSR-78-9533-U: 2W public safety 700/800 MHz Class A/Class B digital repeater; PSR-78-9537-U: 5W public safety 700/800 MHz Class A/Class Bdigital repeater; and ADRF-BBL/BBS-U: 12V/24V/48V battery backup rated for minimum 12-hour runtime

“We’re excited to see ADRF complete the UL 2524 certification of their digital repeaters and battery backups for all public safety frequency bands, including 700/800 and VHF/UHF,” said Allan Sanedrin, principal engineer, Fire and Life Safety Signaling Systems at UL. “The Authorities Having Jurisdiction across the country continue to accelerate their enforcement of this standard as there is great momentum towards ensuring first responders have ubiquitous connectivity inside buildings to keep tenants and occupants safe during emergencies. Additionally, the Enhanced and Smart UL Certification Mark that accompanies certified products, such as ADRFs, will provide greater clarity and transparency into compliance with the applicable codes and standards.”

Source: Advanced RF Technologies

Verizon/AOL Merger to Promote Network Densification

By J. Sharpe Smith

From the network architecture point of view, Verizon’s proposed $4.4 billion purchase of AOL Network will add to the business case for network densification and increase the need for intelligence at the edge of the network, feeding the ability to target content and marketing to the user, Tormod Larsen, chief technology officer, ExteNet Systems, told AGL Media Group in a phone interview.


“With the acquisition of AOL by Verizon, we see the value in content delivery and the service application layer providing revenue beyond the more traditional subscriber model,” Larsen said. “With content-rich applications, we anticipate a direct correlation between the delivery of the content and increased revenue.”

As content-rich applications become more critical to revenue, the ability of the network to handle high-quality content will be critical. Densification will increase the network’s capability to provide that high-value content.

“You might even see the carriers driving the network into areas to provide service based on where it is more valuable to provide that content. It is not always the content; it is also the Big Data,” Larsen said.

Content-driven Delivery Ups the Wireless Ante

Before cellular systems were voice-centric, carriers were inclined to build the same network everywhere, but now with data-centric service, and even more so with content-driven delivery, heterogeneous networks have come to the fore. The wireless infrastructure industry has moved from coverage networks to capacity-driven networks; now the goal is smart-capacity networks.

“What we see evolving is the concept of small networks within the big networks — basically an architecture of networks within networks. For example, a stadium network has different functionality and it is is more independent of the macro environment because it is its own ecosystem,” Larsen said.

Content delivery will be tailored based on the location, whether it is a stadium, a hospital or a hotel. The content can be targeted to specific audiences at specific times, based on how the network is architected. For network infrastructure providers, it is an opportunity to provide more infrastructure because there will be more demand for network capability, especially when a carrier wants granular Big Data analytics.

“What the user expects from a network in a stadium is different from what he or she expects the network to do along the highway,” Larsen said. “With Verizon’s purchase of AOL’s platforms, the carrier can know exactly which subscriber is sitting in which seat and what their habits are, thus allowing targeted content delivery and advertisements.” Additionally, advertising and content can follow the user from the stadium to a hotel room.

Pushing Intelligence to the Network Edge Gives the Carrier an Edge

Network coverage is currently the differentiator, and each carrier has its signature coverage map. But soon those networks will be built out with LTE and the map discussion will become a moot point from a marketing standpoint. So carriers are looking to content delivery for the advantage that will allow them to shine compared with their competition.

Verizon is not alone in its foray into content. AT&T plans to leverage its relationships with automakers to offer advertiser-supported or paid content exclusively for connected car users, according to Reuters. Connected car users will see content, such as videos and games, that can be streamed onto personal mobile devices later this year.

“When you talk about the carriers, currently, you talk about the network, but when you talk about Google, you talk about the subscribers and service, not the network. Even though they have one of the most complex networks,” Larsen said. “More and more carriers are moving into the service and applications. The network will not be the differentiator going forward. The differentiator will be the service and applications that the network enables.”

The play for a distributed network provider like ExteNet is to provide the carrier with a network within the larger network, where the intelligence resides at the edge of the network, not in a datacenter states away.

“It’s about being smarter about how you route your traffic in the network based on location, who the user is, the type of content and the event,” Larsen said. “The carriers may need some partners that are more nimble to help them adjust the network in a venue for a special event. We will need to be able to support that dynamic behavior.”