May 28, 2015 — As much activity as I see in the 5G space, I think the industry is getting around to figuring out exactly what 5G is and what it isn’t. A good sign is the level of activity that has started to pop up. For example, Nokia has a new white paper that presents some interesting data on 5G. The paper highlights what Nokia calls “10 rules for 5G deployment” based on extensive studies of high-density deployments of wireless networks in Tokyo and Madrid.
The research indicates that “an LTE-based HetNet can cope with the capacity demands up to a thousand times greater than was common in 2010. However, to meet capacity needs beyond that, small cells using 5G frequency bands will need to be deployed with an LTE macro/HetNet overlay.”
That makes a lot of sense to me. But more than that, it is a technologically feasible. So this is one sign that the industry is starting to look at 5G more realistically.
Another vector that points in the same direction is the white paper released by GSMA, a global wireless association, which is pretty grounded in the reality of wireless.
The paper, “Understanding 5G: Perspectives on Future Technological Advancements in Mobile,” is a look at what applications cannot be realized with present generation technologies, such as LTE flavors and 4G generational enhancements. And it makes sense. Some applications, such as augmented reality, virtual reality, tactile Internet, and autonomous driving, for example, will need much better “margins” than 4G. Such metrics include end-to-end round-trip latency in the sub-1 ms, area, and greater than 1 Gbps of downlink bandwidth. That reads applications like 3D, gaming, telemedicine, and intelligent transportation systems. Another notch in 5G reality check belt.
Finally, we are seeing movement in the standards vector of 5G. It is no secret that the wireless landscape of tomorrow will require higher data rates, massive device connectivity, more system capacities, reduced latency, energy savings, and high security. There are other requirements, but one gets the picture.
What will loom large for small cells is that the more data capacity you take off your network, the better it performs. That is a script written for small cells. So that being said, the implication is that 5G will a have to have a set of co-dependent standards that work together, seamlessly, and across all spectrum and technologies. Large order, but considering what is at stake, and that it is virtually impossible to design a single technology standard that will perform reasonably well from sub GHz to 80 GHz, i.e. 3.5 GHz Wi-Fi vs. 60 GHz Wi-Fi (WiGig). Also, the design of future radio technology will have to undergo some serious changes. Radios will have to be a lot more frequency agile than they are now. They will have to be able to negotiate everything up to 80 GHz, maybe even higher.
Things in the research end are popping to address that. For example, the 5G Innovation Centre at the University of Surrey, which includes leaders in academia and industry, is hard at work in the 5G space. So is NYU Wireless, widely recognized as one of the wireless industries best brain trusts. Researchers there are gathering data from New York City using prototype base stations and mobile units that they hope will help in the development of 5G channel models. And, the EU and South Korea signed a deal to work on 5G deployment.
Overall, 5G is way ahead of where it was last year at this time. And most of it is in the reality wheelhouse, and much of the hype has calmed down. Time to get on with serious 5G business.